Páka

Pomôcky: špejlová hojdačka
Pedagogická poznámka: Na začiatku hodiny kontrolujeme pravidlá, ktoré mali žiaci sformulovať za domácu úlohu. Ich formulácia nemusí byť rovnaká ako formulácia učeníci, ale mala by byť správna a zrozumiteľná. Žiaci čítajú svoje pravidlá pred triedou a trieda je
kontroluje. Kontrola pravidiel z minulej hodiny.
Ak máme na oboch stranách len jednu skupinu sponiek, platí: Súčin počtu sponiek a počtu dielov na oboch stranách je rovnaký.
Ak je na jednej zo strán viacerých skupín sponiek, platí (všeobecnejšie pravidlo): Pre obe strany sčítame súčiny počtov sponiek a počtov dielikov a obaja súčty musia byť rovnaké.
Ako o rovnováhe na hojdačke hovorí fyzici?
• Celú hojdačku označujeme ako páku.
• Špendlík, okolo ktorého sa hojdačka otáča, (presnejšie priamku, prechádzajúcej stredom špendlíka) označujeme ako os otáčania (ide o jedinú časť párky, ktorá sa pri otáčaní nepohybuje).
• Sponky na páku pôsobí silou (značka F).
• Vzdialenosť pôsobiska sily od osi otáčania sa nazýva rameno sily (väčšinou značka r alebo d).
• Súčin veľkosti sily a ramena sily (ktorý rozhoduje o rovnováhe) sa nazýva moment sily (značka M). Jednotkou momentu sily je Newton meter [N * m].
Dodatok: Pretože veličinu moment sily sme zaviedli ako súčin sily a vzdialenosti, aj jej jednotku sme získali ako súčin jednotky sily a jednotky vzdialenosti. Tento postup sa vo fyzike používa veľmi často a užitočne obmedzuje množstvo jednotiek.
Pr. 1: Sformulujte obe pravidlá pre rovnováhu na hojdačke pomocou vyššie uvedených fyzikálnych pojmov.
Ak máme na oboch stranách len jednu skupinu sponiek, platí: Momenty síl na oboch stranách páky sú zhodné. Ak je na jednej zo strán viacerých skupín sponiek, platí (všeobecnejšie pravidlo): Súčet momentov síl na jednej strane sa rovná súčtu momentov síl na druhej strane.

Pr. 2: prekreslí situáciu schematicky do zošita (bez sponiek a špendlíka). V obrázku vyznač os otáčania, pôsobiace sily a ich ramená. Je páka v rovnováhe?
1
Os otáčania je vyznačená červeným krížikom.
Páka nie je v rovnováhe:
• moment sily vľavo je 4 * 4 = 16,
• moment sily vpravo je 3 * 5 = 15,
Páka sa nakloní ľavou stranou nadol.
Pr. 3: Na páku pôsobia dve sily. Zapíš podmienku pre rovnováhu pomocou rovnice.
2
Momenty oboch síl sa musí rovnať: M M 1 2 =.
Dosadíme za momenty síl: F1r1 = F2r2.
Pr. 4: Zapíš rovnicou podmienku pre rovnováhu na páke na obrázku.
3
Celkový moment vľavo sa musí rovnať celkovému momentu vpravo: M1 = M2 + M3.
Dosadíme za momenty síl: F1r1 =  F2r2 +F3r3.
Pr. 5: Prečo sa kľučka montuje na dvere vždy čo najďalej od pántov. Čo by sa stalo, keby bola kľučka na druhom konci dverí (u pántov).
Čím ďalej od pántov pôsobíme silou, tým väčšia je moment sily, ktorým dvere otvárame a tým ľahšie sa dvere otvárajú. Keby bola kľučka na u pántov, moment sily, ktorú dvere otvárame by bol ďaleko menší a museli by sme tlačiť väčšou silou.
Pedagogická poznámka: O hodine si to vyskúšať nestíhame (púšťam k dverám tých, ktorí spočítajú nasledujúce príklady), všetci zostávajúci majú za úlohu si to vyskúšať o prestávke alebo doma.
Pr. 6: Hojdačka je dlhá 3 m a je podložená uprostred. Amálka vážiaci 25 kg si sadne na jeden koniec. Ako ďaleko od stredu si musí na druhej strane sadnúť otecko vážiaci 80 kg, aby bola hojdačka vyvážená? Ide o rovnakú situáciu ako v prípade 3 ⇒ obe sily by na páku pôsobiť rovnakým momentom. Amálka aj otecko pôsobí na hojdačku silou, ktorá sa rovná gravitačnej sile Zeme.
5
Otecko si musí sadnúť 0,47 m od stredu hojdačky.
Pr. 7: Páka na obrázku je v rovnováhe. Vypočítajte veľkosť sily F.
6
Momenty síl na pravej strane nemôžeme sčítať, pretože obe sily majú opačný smer a snaží sa otáčať páku opačným smerom (sila 30 N otáča páku rovnakým smerom ako sila F). Celkový moment na pravej strane: 1,5 * 40 – 0,5 * 30 N * m = 45 N * m.
Pre ľavú silu musí platiť: F * 1,25 = 45.
7Sila F musí mať veľkosť 36 N.
Pr. 8: Veľmi nebezpečné je strkať k pántom dvere. Čo v takom prípade hrozí? Akú silou by dvere na prsty na pántov pôsobili, keby na druhej strane niekto zatváral silou 10 N?
Dvere budú privierať prstami (a stláčať je), kým prsty na nich nebudú pôsobiť rovnako veľkým momentom ako sila, ktorú niekto zatvára dvere ⇒ potrebujeme zmerať ramená oboch síl.
• Rameno sily otvárajúce dvere: 70 cm.
• Rameno sily pôsobiace na prsty: 2 cm.
8Na prsty privreté v u pántov pôsobí sila 350 N.
Zhrnutie: Páka je v rovnováhe, keď v oboch smeroch pôsobí rovnaký celkový moment sily.

3. Newtonov zákon I – príklady

Pr. 1: Nakresli obrázok stola na ktorom je položený tehlička. Nakreslí dvojicu partnerských síl, ktorá pôsobí medzi stolom a tehlička. Nakresli ďalšie sily, ktoré pôsobia na tehlička.
Pr. 2: Na predchádzajúcom obrázku sú nakreslené tri sily. Ako je možné, že tehlička neprepadne stolom dole?
Pr. 3: Vysvetli, keď chytáš ťažký loptu (medicinbalom) tlačí ťa dozadu. Prečo?
Pr. 4: Nájdi ďalšie príklady, ktoré dokumentujú platnosť 3. Newtonovho zákona.
Pr. 5: Nakresli obrázok tenisové rakety od, ktoré sa odráža tenisový loptičku. do obrázka nakresli dvojicu partnerských síl.
Pr. 6: Na obrázku tenisové rakety z predchádzajúceho príkladu sú zakreslené dve rovnako veľké sily opačného smeru. Ako je možné, že sa loptička zastaví a odrazí späť.
Pr. 7: Prečo sa nemôžeš rukami zdvihnúť za nohu nad zem?
Pr. 8: Prečo sa barón Prášil nemohol vytiahnuť z bažiny za svoj vrkoč?
Pr. 9: Daj si na ruku ceruzku a vyhoď ju. Aká sila spôsobuje pohyb ceruzky hore.

3. Newtonov zákon I

Zákon už poznáme: Ku každej sile existuje partnerská sila.
Správne „učebnicové znenia“:
Pokiaľ jedno teleso pôsobí na druhé silou, pôsobí aj druhé teleso na prvý silou rovnakej veľkosti a opačného smeru.
Pomenovanie zákon akcie a reakcie nie je moc šťastné. Vyvoláva dojem, že jedna zo síl je prvá (Akcie) a druhá na nej iba reaguje (reakcia). V skutočnosti obe sily vznikajú aj zanikajú naraz a nie je možné rozlíšiť, ktorá je akcií a ktorá reakcií.
Pr. 1: Nakresli obrázok stola na ktorom je položený tehlička. Nakreslí dvojicu partnerských síl, ktorá pôsobí medzi stolom a tehlička. Nakresli ďalšie sily, ktoré pôsobia na tehlička.
1
• tehlička pôsobí silou Fk  smerom nadol na stôl.
• Stôl pôsobí rovnako veľkou silou smerom nahor na tehlička.
Ďalšie silou, ktorá pôsobí na tehlička, je gravitačná sila Zeme.
2
Pedagogická poznámka: Predchádzajúci príklad kreslíme na tabuľu. Akonáhle sa v obrázku objaví tretia sila, väčšinou sa niekto ozve, že sú zle veľkosti a tehlička musí prepadnúť stolom.
Pr. 2: Na predchádzajúcom obrázku sú nakreslené tri sily. Ako je možné, že tehlička neprepadne stolom dole?
Červená sila Fk  nepôsobí na tehlička a nemá naň teda žiadny vplyv. Na tehlička pôsobí iba dve sily – sila stola a gravitačná sila Zeme, ktoré majú nulovú výslednicu (tehlička teda nemá žiadny dôvod na to, aby sa prepadol stolom).
Pohyb tehličky ovplyvňujú len sily, ktoré na tehlička pôsobí, medzi tie sila tehličky na stôl nepatrí.
Pedagogická poznámka: Žiaci vymýšľajú mnoho rôznych krkolomných vysvetlenie, ako príklad vysvetliť, ale len veľmi málo z nich nájde správne vysvetlenie. Pohyb predmetu ovplyvňujú len sily, ktoré na predmet pôsobia.
Pr. 3: Vysvetli, keď chytáš ťažký loptu (medicinbalom) tlačí ťa dozadu. Prečo? Medicinbal chce pokračovať vo svojom pohybe ⇒ tlačí ma dozadu. Ja pôsobím na medicinbal proti smeru jeho pohybu (aby som ho zastavil) ⇒ medicinbalom pôsobí v smere svojho pohybu na mňa ⇒ medicinbal ma tlačí dozadu.
Pr. 4: Nájdi ďalšie príklady, ktoré dokumentujú platnosť 3. Newtonovho zákona.
Pr. 5: Nakresli obrázok tenisové rakety od, ktoré sa odráža tenisový loptičku. do obrázka nakresli dvojicu partnerských síl.
3V obrázku sú zakreslené dve sily:
• silá loptičky Fm na raketu,
• sila rakety Fr na loptičku.
Pr. 6: Na obrázku tenisové rakety z predchádzajúceho príkladu sú zakreslené dve rovnako veľké sily opačného smeru. Ako je možné, že sa loptička zastaví a odrazí späť. Jedna zo síl pôsobí na raketu, nemôžeme ju sčítať s druhou silou, ktorá pôsobí na loptičku. na
loptička tak pôsobí iba jedna sila, ktorá ho zastaví a odmrští späť.
Pedagogická poznámka: Opäť sa oveľa častejšie objavuje názor, že sila Fr  je väčšia (aby mohla loptička odraziť) ako správne vysvetlenie. Po vyriešení príkladu upozorňujem, ako neopatrné a nedôsledné bežné uvažovania je.
Pr. 7: Prečo sa nemôžeš rukami zdvihnúť za nohu nad zem?
Rukami tlačíme nohu hore, ale zároveň noha tlačí rovnako veľkou silou na ruky ⇒ obe rovnako veľkej sily opačného smeru pôsobí na rovnaký predmet.
Pr. 8: Prečo sa barón Prášil nemohol vytiahnuť z bažiny za svoj vrkoč? Jednou z mnohých ťažkostí, z ktorých sa barón Prášil vo svojich príhodách šťastne dostal, bola nehoda v bažine. Barón uviazol a začal sa topiť. Vo chvíli, keď sa schyľovalo k najhoršiemu, sa
z bažiny sám za svoj vrkoč vytiahol.

4

V skutočnosti by sa utopil. Ak by sa rukou chytil za vrkoč a začal ho ťahať nahor, objavila by sa sila jeho ruky na vrkoč, ktorá by ho ťahala hore, ale zároveň s ňou by sa objavila aj jej partnerská sila vrkoča na ruku, rovnako veľká smerujúci nadol. Obe sily sú rovnako veľké a obe pôsobí na telo baróna ⇒ ich výslednica je nulová a barón ďalej klesá do bažiny.
Pr. 9: Daj si na ruku ceruzku a vyhoď ju. Aká sila spôsobuje pohyb ceruzky hore, Sila ruky, ktorá pôsobí na Tuck smerom nahor.
Zhrnutie: Pohyb predmetu ovplyvňujú len sily, ktoré na predmet pôsobia

2. Newtonov zákon I – príklady

Pr. 1: Na obrázkoch sú dve rakety. Ktorá z nich letia rýchlejšie?
1
Pr. 2: Nakresli obrázok upuštěného kameňa. Do obrázku vyznač pôsobiace sily, ich výslednicu aj smer jeho pohybu. Akým spôsobom sa pohybuje?
Pr. 3: Nakresli obrázok tehličky kĺžuceho po stole. Aké na neho pôsobia sily? aká je ich výslednica? Ako sa tehlička pohybuje?
Pr. 4: Nakresli obrázok Zeme a Mesiaca. Do obrázku vyznač sily, ktoré pôsobia na Mesiac a smer jeho pohybu okolo Zeme. Akým spôsobom sa pohybuje?
Pr. 5: Prejdi riešenie predchádzajúcich príkladov a rozhodni, ako v rôznych situáciách ovplyvňuje výsledná sila pohyb.
Pr. 6: Zmeraj trenie, ktoré pôsobia na korčuliara proti pohybu pri jazde na kolieskových korčuliach.
Pr. 7: Ťahaj silomerom korčuliarov silou, ktorá väčšia ako trenie brzdiaci jeho pohyb. akým spôsobom sa korčuliar pohybuje?
Pr. 8: Zväčši veľkosť sily, ktorú ťaháš experimentátora. Ako sa zmení jeho pohyb?
Pr. 9: Zaveste na korčuliarov ďalšieho člena skupiny. Zmení sa tretí, ktoré pôsobia proti jeho pohybu pri jazde na korčuliach? Zmeraj toto trenie
Pr. 10: Ťahaj korčuliarov záťažou silomerom tak, aby na neho pôsobila rovnaká výsledná sila ako v príklade 4. Ako sa pohybuje?
Pr. 11: Na čom závisí veľkosť zrýchlenia, ktoré spôsobuje výsledná sila?

2. Newtonov zákon I

Pomôcky: kolieskové korčule, silomery
V minulých hodinách sme vyriešili, ako sa pohybujú predmety, keď na ne pôsobia nulová výsledná sila. Teraz sa budeme zaoberať tým, aká je situácia, ak na predmet výsledná sila pôsobí.
Pr. 1: Na obrázkoch sú dve rakety. Ktorá z nich letia rýchlejšie?
1
Nemôže povedať nič o tom, ako letí rakety rýchlo. Každá si udržiava svoju rýchlosť a preto záleží na tom, ako dlho boli motory zapnuté pred nakreslením obrázku (napríklad raketa a) teraz
začala zrýchľovať, zatiaľ čo raketa b) zrýchľovanie pred chvíľou ukončila).
Pr. 2: Nakresli obrázok upuštěného kameňa. Do obrázku vyznač pôsobiace sily, ich výslednicu aj smer jeho pohybu. Akým spôsobom sa pohybuje?
Na kameň pôsobí:
• gravitácie F
g
smerom nadol,
• odpor vzduchu Fv
proti smeru pohybu (na začiatku je ale veľmi malý, s rýchlosťou sa
zväčšuje),
2
Výsledná sila pôsobí smerom nadol (a s rýchlosťou pádu sa zmenšuje). Kameň sa pohybuje dole a zrýchľuje.
3
Pr. 3: Nakresli obrázok tehličky kĺžuceho po stole. Aké na neho pôsobia sily? aká je ich výslednica? Ako sa tehlička pohybuje?
Na tehlička pôsobí počas kĺzanie po stole tri sily:
2
• gravitácie Fg smerom nadol,
• sila podložky Fp smerom nahor,
• trecia sila Ft proti smeru pohybu.
4Gravitačná sila a sila podložky sa navzájom vyrušia ⇒ výsledná sila sa zhoduje s trecou silou, pôsobí proti smeru pohybu. Krabička spomaľuje.
5Pr. 4: Nakresli obrázok Zeme a Mesiaca. Do obrázku vyznač sily, ktoré pôsobia na Mesiac a smer jeho pohybu okolo Zeme. Akým spôsobom sa pohybuje?
Na Mesiac pôsobí počas pohybu okolo Zeme len gravitačná sila Zeme.
6
Gravitačná sila Zeme pôsobí kolmo na smer jej pohybu a udržiava ju na kruhovej dráhe okolo Zeme.
Pr. 5: Prejdi riešenie predchádzajúcich príkladov a rozhodni, ako v rôznych situáciách ovplyvňuje výsledná sila pohyb.
Tri varianty pôsobenia výslednej sily:
• výsledná sila pôsobí v smere pohybu ⇒ rýchlosť pohybu sa zväčšuje, predmet zrýchľuje,
• výsledná sila pôsobí proti smeru pohybu ⇒ rýchlosť pohybu sa zmenšuje, predmet spomaľuje,
• výsledná sila pôsobí kolmo na smer pohybu ⇒ rýchlosť pohybu sa nemení, ale mení sa smer pohybu, predmet zatáča.
Žiadna ďalšia varianta sa skúmať nemusí, pretože každú výslednú silu pôsobiacu na predmet môžeme rozložiť na zložku, ktorá pôsobí:
• v smere pohybu a spôsobuje zrýchľovania alebo spomaľovania,
• kolmo na smer pohybu a spôsobuje zmenu smeru.
Všetky deje, pri ktorých sa mení rýchlosť, fyzici označujú ako zrýchľovanie ⇒ vplyv výsledné sily na pohyb môžeme zhrnúť do úderného fyzikálneho hesla (pozdravu): kde sila, tam zrýchlenie.
Kde sila, tam zrýchlenie.
Pr. 6: Zmeraj trenie, ktoré pôsobia na korčuliara proti pohybu pri jazde na kolieskových korčuliach. Rovnomerne potiahneme korčuliarov a meriame silu, ktorou ho musíme ťahať (Trecie sila sa
rovnako veľká, ako sila, ktorou ho ťaháme). Na korčuliarov pôsobí trecia sila 6 N.
Pr. 7: Ťahaj silomerom korčuliarov silou, ktorá väčšia ako trenie brzdiaci jeho pohyb. akým spôsobom sa korčuliar pohybuje?
Ak ťaháme silou 8 N, korčuliar neustále zrýchľuje.
Pr. 8: Zväčši veľkosť sily, ktorú ťaháš experimentátora. Ako sa zmení jeho pohyb? Ak ťaháme silou 10 N, korčuliar zrýchľuje viac ako pri ťahaní silou 8 N. Ak ťaháme silou 7 N, korčuliar zrýchľuje menej ako pri ťahaní silou 8 N.
Pr. 9: Zaveste na korčuliarov ďalšieho člena skupiny. Zmení sa tretí, ktoré pôsobia proti jeho pohybu pri jazde na korčuliach? Zmeraj toto trenie Trenie sa zmení (na korčule pôsobí väčšie tlaková sila) ⇒ musíme trecie silu opäť zmerať. Nová hodnota trecie sily 10 N.
Pr. 10: Ťahaj korčuliarov záťažou silomerom tak, aby na neho pôsobila rovnaká výsledná sila ako v príklade 4. Ako sa pohybuje?
Vo šetkých prípadoch musíme ťahať silou o 4 N väčší ako bola pôvodná sila (teda silami 12 N, 14 N a 11 N).
Opäť platí, že väčšia sila znamená väčšie zrýchlenie. Všetky zrýchlenia sa záťažou sú však menšie než zrýchlenie s rovnakou výslednou silou bez záťaže.
Pr. 11: Na čom závisí veľkosť zrýchlenia, ktoré spôsobuje výsledná sila?
Zhrnutie: Kde sila tam zrýchlenie.

1. Newtonov zákon I – príklady

Pr. 1: Na stole leží krabička. Čo musíme urobiť, aby sa dala do pohybu? Prečo sa potom krabička pohybuje?
Pr. 2: Sformulujte, ako ý je vzťah medzi silou ruky a pohybom krabičky.
Pr. 3: Sleduj pohyb krabičky po rôznych spôsoboch strkanie rúk. Platí Tvoj predchádzajúcej záver?
Pr. 4: Nakresli do obrázka sily, ktoré pôsobia na krabičku po tom, čo do nej už rúk nestrkáš a ona sa ešte pohybuje.
Pr. 5: Čo sa stane, keď valček nebude brzdiť žiadne trenie ani iné sily pôsobiace proti smeru jeho pohybu (odpor vzduchu, …)?
Pr. 6: Nájdi predmety, ktoré sa dlhodobo pohybujú stále rovnakým spôsobom, bez toho aby na ne pôsobila sila v smere ich pohybu.
Pr. 7: Existuje situácia, za ktoré sa v bežnom živote, trenie výrazne zmenší a my môžeme pozorovať pohyb predmetov za situácie, ktorá pripomína predpoklady 1. Newtonovho zákona.
Pr. 8: Ako sa prejaví zotrvačnosť telies pri jazde autobusom v zákrute? Ako sa prejavuje pri brzdenie?
Pr. 9: Prečo sa musí v automobiloch používať bezpečnostné pásy?
Pr. 10: Keď nesieš tanier s polievkou nemôžeš ani rýchlo rozísť ani rýchlo zastaviť. Prečo? čo by sa stalo, keby si to urobil?

1. Newtonov zákon I

Pomôcky: valcové závažia 100 g, podložky s rôznym koeficientom trenia, tvrdý papier na nájazdovú rampu a podložka rampy s výškou zodpovedajúce hrúbke kriedy Vieme, že pohyb súvisí s pôsobením síl (keď chceme, aby sa niečo začalo alebo prestalo pohybovať, musíme do toho strčiť) ⇒ skúsime preskúmať, ako presne táto súvislosť
vyzerá.
Dnešná hodina je základným fyzikálnym problémom, ktorého úspešné vyriešenie na začiatku 17. storočia odštartovalo jej obrovský rozvoj (a rozvoj techniky).
Súvislosť medzi silou a pohybom študovali vedci od pradávna a už od staroveku ho považovali za vyriešený, ako sa ukázalo v 17. storočí, vyriešený bol zle. Pre nás to znamená, že musíme byť veľmi opatrní.
Pr. 1: Na stole leží krabička. Čo musíme urobiť, aby sa dala do pohybu? Prečo sa potom krabička pohybuje?
Musíme do krabičky strčiť. Krabička sa pohybuje, pretože na ňu pôsobí sila ruky.
Pr. 2: Sformulujte, ako ý je vzťah medzi silou ruky a pohybom krabičky. Pokiaľ pôsobí sila ruky, krabička sa pohybuje.
Pr. 3: Sleduj pohyb krabičky po rôznych spôsoboch strkanie rúk. Platí Tvoj predchádzajúcej záver?
Náš predchádzajúci záver neplatí vždy. Pokiaľ do krabičky strčíme viac, chvíľu sa pohybuje, aj keď do nej rúk už nestrkáme.
Pr. 4: Nakresli do obrázka sily, ktoré pôsobia na krabičku po tom, čo do nej už rúk nestrkáš a ona sa ešte pohybuje.
1
Súčet gravitačné sily a sily podložky je nulový (sily sa navzájom vyrušia) ⇒ výsledná sila, ktorá pôsobí na škatuľku je rovná trecie sile a pôsobí teda proti smeru pohybu krabičky. V tejto časti pohybe sa krabička chová presne opačne ako sme ešte pred chvíľu predpokladali.
• Náš predpoklad: predmety sa pohybujú tam, kam ich tlačí vonkajšia sila.
• Skutočnosť: krabička sa pohybuje opačným smerom ako na neho tlačí vonkajšie (trecia sila).
Dodatok: Použitie valčeka na nasledujúce pokus nie je celkom korektné, pretože sa okrem posuvného pohybu i otáča. Postupoval som týmto spôsobom však mnohokrát a nikdy sa u žiakov neobjavili žiadne nejasnosti.
Budeme sa situáciou, ktorá nastáva počas brzdenia zaoberať podrobnejšie.
Vykonáme dve zmeny:
• miesto krabičky budeme sledovať kotúľajúce sa valček, pretože zastavuje pomalšie a máme dlhší čas pozorovať, čo sa deje,
• do valčeka nebudeme strkať prstom, ale budeme ho púšťať zo šikmého nájazdu (tým dosiahneme to, že na začiatku vodorovného pohybu bude mať valček vždy rovnakú rýchlosť.
Počas jazdy po vodorovnej rovine pôsobí na valček iba trecia sila ⇒ budeme zmenšovať veľkosť trecie sily medzi valčekom a podložkou a sledovať, ako sa mení pohyb valčeka. Nájdeme si niekoľko rôznych povrchov a pomocou silomeru a krabičky sa presvedčíme, ako sa
mení trenie, ktorým brzdí predmety, ktoré sa po nich pohybujú.
Získame napríklad takúto postupnosť povrchov (od najväčšieho trenia k najmenšiemu): molitan, chlpatý koberec, hrubý sololit, leštený sololit.
Pedagogická poznámka: Opäť nie je nutné študentmi o poradí povrchov podľa veľkosti trenia presviedčať.
Valček postupne púšťame zo stále rovnakého nájazde tak, aby sa pri vodorovnej časti pohybu, kotúľal po rôznych povrchoch. ⇒ Pri každom zmenšení trecie sily sa predĺži dráha, ktorú valček prejde než zastaví. Nemáme k dispozícii lepšie povrch ako sklo ⇒ myšlienkový pokus:
• Pustili sme valček po molitanu, zastavil sa na určitej dráhe.
• Pustili sme valček po koberci, tým sme znížili trenie a on došiel ďalej.
• Pustili sme valček po hrubom sololitu, tým sme opäť znížili trenie a on došiel ešte ďalej.
• Ako by sa zmenila dráha valčeka na kvalitnejšom povrchu ako je hrubý sololit? dráha valčeka sa opäť zväčší.
Rozhodujúci okamih:
Predstavme si, že budeme trecie silu stále zmenšovať ⇒ dráha, ktorú prejde valček, bude stále dlhšie a dlhšie.
Pr. 5: Čo sa stane, keď valček nebude brzdiť žiadne trenie ani iné sily pôsobiace proti smeru jeho pohybu (odpor vzduchu, …)?
Dve možnosti:
• Valček aj s nulovým trením na nejaké (treba veľa dlhé) dráhe zastaví.
• V okamihu, keď valček nebude nič brzdiť, sa valček bude pohybovať stále ďalej a ďalej až do nekonečna. Valček, ktorý nebrzdí žiadna sila, nebude spomaľovať. Oba závery sú divné, ale druhý je pravdepodobnejšie (keby platil prvý musel by nastať okamih, že by sme zmenšili brzdiaci silu a pri tom by sa nepredĺžil dojazd).
Valček, na ktorý nepôsobí žiadne sily, alebo výslednica pôsobiacich síl je nulová, sa pohybuje priamočiaro stále rovnakou rýchlosťou a nikdy sa nezastaví.
Pedagogická poznámka: Ak budete argumentovať vyššie uvedeným spôsobom, podarí sa Vám študentov presvedčiť asi pomerne ľahko (v mojich hodinách volí zlú odpoveď len jednotlivci). Tým je však splnená len menšiu časť úlohy, pretože pri riešení príkladov
z praxe sa väčšina študentov začne podvedome vracať k aristotelovskému poňatie. Prečo je tento záver tak ťažko prijateľný?
V našom okolí neexistujú žiadne predmety, na ktoré by nepôsobili žiadne sily. na všetky predmety z našej skúsenosti pôsobí trecia sila (alebo odpor vzduchu, alebo oboje). Preto keď na ne prestaneme pôsobiť v smere ich pohybu, postupne zastaví.
Náš záver sa neopisuje bezprostredné správanie predmetov, s ktorými sa bežne stretávame, pretože na ne brzdiaci sily pôsobia.
Na čo je výsledok, ktorý opisuje správanie predmetov, s ktorými sa bežne nestretneme? Týmto výsledkom sme pochopili, akým spôsobom sa pohybujú predmety v najjednoduchšom možnom prípade (bez pôsobenia síl alebo s nulovou výslednicou) ⇒ máme väčšiu šancu pochopiť, ako sa predmety správajú v zložitejších situáciách (s nenulovú výslednicou).
1. Newtonov pohybový zákon:
Teleso, na ktorý pôsobia sily, ktorých výslednica je nulová, sa pohybuje rovnomerne priamočiaro alebo zostáva v pokoji.
Iná formulácia:
Každé teleso zotrváva v pokoji alebo v rovnomernom priamočiarom pohybe, pokiaľ nie je nútené vonkajšími silami tento stav zmeniť.
Pr. 6: Nájdi predmety, ktoré sa dlhodobo pohybujú stále rovnakým spôsobom, bez toho aby na ne pôsobila sila v smere ich pohybu.
Napríklad Mesiac sa otáča okolo Zeme po približne kruhovej dráhe, stále rovnakou rýchlosťou. vo smeru jeho pohybu na neho nepôsobí žiadna sila, pretože gravitačná sila od Zeme pôsobí do jeho
stredu, kolmo k jeho dráhe.
Podobne obieha Zem okolo Slnka, družice okolo Zeme.
Kozmické sondy pre prieskum vonkajších častí slnečnej sústavy sa pohybujú s vypnutými motory desiatky rokov a doteraz sa nezastavili (ich rýchlosť sa však kvôli priťahovanie Slnka
pomaly zmenšuje, napriek tomu je Slnko už nikdy nezastaví).
Pr. 7: Existuje situácia, za ktoré sa v bežnom živote, trenie výrazne zmenší a my môžeme pozorovať pohyb predmetov za situácie, ktorá pripomína predpoklady 1. Newtonovho
zákona.
Pri poľadovici sa chvíľkovo ocitáme v situáciách, kedy nám príroda takmer doslovne demonštruje platnosť 1. Newtonovho zákona:
• Ak ideme, nemôže sa ihneď zastaviť ani zatočiť.
• Stojaca auto sa nemôže rozbehnúť.
• Idúce auto nemôže zastaviť ani zatočiť.
Trenie je veľmi malé ⇒ výsledná sila, ktorá na nás pôsobí je veľmi malá ⇒ zotrvávame v rovnomernom priamočiarom pohybe alebo v pokoji.
Ak teleso zostáva v pokoji alebo v rovnomernom priamočiarom pohybe, znamená to, že zotrváva v stále rovnakom pohybovom stave ⇒ 1. Newtonov zákon sa často nazýva zákon zotrvačnosti.
⇒ Zotrvačnosť nie je sila, ale základné tendencie všetkých hmotných predmetov, zachovávať svoj pohybový stav.
Pr. 8: Ako sa prejaví zotrvačnosť telies pri jazde autobusom v zákrute? Ako sa prejavuje pri
brzdenie?
Zatáčania: Pasažier si chce uchovať svoj pohybový stav ⇒ chce sa pohybovať priamočiaro ⇒ má pocit, že ho niečo tlačí k von zo zákruty.
Brzdenie: Pasažier si chce uchovať svoj pohybový stav ⇒ chce sa pohybovať stále rovnakú rýchlosťou dopredu ⇒ má pocit, že ho niečo dvíha zo sedadla (stojaci sa musí držať, aby nepadol
smerom dopredu).
Pr. 9: Prečo sa musí v automobiloch používať bezpečnostné pásy?
Pri náraze automobil veľmi rýchlo zabrzdí, ale cestujúci majú podľa zákona zotrvačnosti tendenciu pokračovať v rovnomernom priamočiarom pohybe ⇒ preletí predným sklom a vyletí
von z automobilu. ⇒ Musia byť pripútanie pásmi, ktoré na cestujúcich pôsobí silou potrebnou na to, aby zabrzdili s autom.
Dodatok: Sily potrebné na zastavenie cestujúceho s narážejícím automobilom sú obrovské, zodpovedajú hmotnosti niekoľkých ton a je úplne vylúčené, aby sa v takejto situácii cestujú „nejako udržal sám“.
Pr. 10: Keď nesieš tanier s polievkou nemôžeš ani rýchlo rozísť ani rýchlo zastaviť. Prečo? čo by sa stalo, keby si to urobil?
Keď budem stáť a pokúsim sa rýchlo rozísť, polievka vytečie smerom ku mne, pretože podľa zákona zotrvačnosti zostáva stáť (nie je pevne primontovaná k tanieru a nepôsobí na nej sila, ktorá by ju
uviedla do pohybu ako sila našich rukách, ktorá rozhýbe tanier).
Keď s polievkou idem a rýchlo zastavím nastáva opačná situácia. Polievka vytečie smerom odo mne dopredu v smere, ktorým som išiel.
Zhrnutie: Ak na predmet pôsobí nulová výsledná sila, zostáva v pokoji alebo sa pohybuje rovnomerne priamočiaro (zachováva si svoj pohyb).

Sčítanie vektorov – príklady

Závěr minulé hodiny: vektory sečteme tak, že jejich šipky postavíme za sebe

Postřeh: nezáleží na pořadí, v jakém sečtení provedeme.

2

Př. 1: Prohlédni si předchozí obrázek a spočti, kolika způsoby můžeme provést grafické sečtení dvou sil.

Př. 2: Sečti graficky i početně síly na obrázcích.

6

Př. 3: Překresli obrázky do sešitu a sečti síly (od ruky, bez pravítka). Zkoušej různé postupy.

9

Př. 4: Sečti síly na obrázku. Změř velikost výslednice.

12

Př. 5: Narýsuj obrázek do sešitu a sečti graficky síly. Urči měřením velikost výsledné síly a úhel, který výslednice svírá se silou

16

Př. 6: Sečti graficky dvojice sil na obrázcích. Měřením urči velikost výslednice.

25

Př. 7: Dědeček a babička tahají řepu, dědeček silou 450 N, babička silou 300 N. Jak musí tahat, aby tahali dohromady silou 600 N? Narýsuj situaci a úhel zjisti měřením.

Sčítanie vektorov

Pomôcky: rysovacie potreby
1
Záver minulej hodiny: vektory sčítame tak, že ich šípky postavíme za seba
Postreh: nezáleží na poradí, v akom sčítaní vykonáme.
2
Pr. 1: Pozri si predchádzajúci obrázok a spočítame, koľkými spôsobmi môžeme vykonať grafické sčítaní dvoch síl.
Tromi spôsobmi:
• posunieme druhú silu za prvé:
3
• posunieme prvý silo za druhou:
4
• zostrojíme rovnobežník:
5
Pr. 2: Spočítaj graficky i početne sily na obrázkoch.
6
a) Početne: F1 +F2 = 8 + 6 N = 14 N.
Graficky:
7 (zelenú šípku postavíme za modrú).
b) Početne: F1 +F2 = 8 – 6 N = 2 N.
Graficky:

8
(Zelenú šípku opäť postavíme za modrú).
Pr. 3: prekreslí obrázky do zošita a spočítaj sily (od ruky, bez pravítka). skúšaj rôzne postupy.910

Pedagogická poznámka: Žiaci samozrejme kreslí iba jeden z postupov, ale snažím sa, aby ich striedali. Najväčší problém je s bodom c), kde si žiaci zrazu nevie rady s tromi vektory. Snažím sa opakovať, že na postupe i princípe sa nič nemení, len sa musí urobiť viackrát, alebo pripomínam minulú hodinu, kde u pútnika tiež skladali viac posunutie dohromady.
Pedagogická poznámka: Nasledujúci príklad žiaci rysujú na predtlačený papierik.
Pr. 4: Spočítaj sily na obrázku. Zmeraj veľkosť výslednica.
12
13

15
Pr. 5: narysujte obrázok do zošita a spočítaj graficky sily. Urči meraním veľkosť výslednej sily a
uhol, ktorý výslednica zviera so silou F1
16
Rovnako ako v predchádzajúcom príklade môžeme dať:
druhú šípku za prvé:
17
Pr. 6: Spočítaj graficky dvojica síl na obrázkoch. Meraním urči veľkosť výslednica.
19
Pr. 7: Dedko a babka ťahajú repu, dedko silou 450 N, babička silou 300 N. Ako musí ťahať, aby ťahali dohromady silou 600 N? Narysujte situáciu a uhol zisti meraním.
Postreh: Pri skladaní síl vznikne trojuholník. V našom prípade poznáme všetky tri strany (silu, deda, babičky i výslednú silu) ⇒ trojuholník môžeme narysovať a tým nájsť presný uhol, ktorý musí sily dedka a babičky zvierať 76 °
Pokiaľ budú dedko s babkou ťahať repu tak, že ich sily zvierajú uhol 76 °, budú pôsobiť výslednú silou 600 N.
Žiaci prinesú nabudúce: rysovacie potreby
Zhrnutie: Vektory sčítame tým, že ich postavíme za seba (alebo pomocou rovnobežníka síl).

Sily – príklady

Pr. 1: Ktoré tri podmienky musia spĺňať každá sila? Skontroluj ich splnenie u nasledujúcich síl:
a) sila, ktorú na Teba pôsobí stoličky, na ktorej sedíš,
b) sila, ktorou pôsobí závažie na špagát, na ktorom je zavesené,
c) gravitačná sila, ktorou na Teba pôsobí Zeme.
Pr. 2: Na stôl položíme ťažký železný tehlička. Magnet, ktorý sa nachádza vedľa, sa ku tehličky pritiahne. Prečo nevyzerá silové pôsobenie magnetu a tehličky ako vzájomné (prečo sa tehlička nepriťahuje k magnetu)?
Pr. 3: Akým spôsobom zakresľujú sily? Prečo?
Pr. 4: Sila F má v skutočnosti veľkosť 9 N. Určte veľkosti ostatných síl.
Narysujte na papierik:
a) silu F4
o veľkosti 15 N, s rovnakým pôsobiskom ako má sila F2 a s rovnakým
smerom ako má sila F3,
b) silu F5 o veľkosti 6 N, s rovnakým pôsobiskom ako má sila F a s opačným smerom než má sila F1
11
Pr. 5: Ako spoznáš, že dva snímače meria rovnako? Prečo?
Pr. 6: Pomocou silomeru a tehličky Demonštrujte, že účinok sily závisí na:
a) veľkosti sily, b) smeru pôsobenia sily, c) pôsobisku sily.